1. International technology roadmap for semiconductors 2. Scanning probe microscopes 3. Giant magnetoresistive effect 4. Semiconductor lasers and LEDs 5. National nanotechnology initiative 6. Carbon fiber reinforced plastics 7. Materials for Li ion batteries 8. Carbon nanotubes 9. Soft lithography 10. Metamaterials
Thomas Edison famously remarked that if he tried 10,000 experiments that failed, he didn't actually consider it a failure, but found 10,000 things that didn't work. That's true, but it's also incredibly tedious, time consuming and expensive. The new methods, however, have the potential to automate those 10,000 failures, which is creating a revolution in materials science. For example, at the Joint Center for Energy Storage Research (JCESR) , a US government initiative to create the next generation of advanced batteries, the major challenge now is not so much to identify potential battery chemistries, but that the materials to make those chemistries work don't exist yet. Historically, that would have been an insurmountable problem, but not anymore. "Using high performance computing simulations, materials genomes and other techniques that have been developed over the last decade or so, we can often eliminate as much as 99% of the possibilities