Skip to main content

Entrepreneurs Investment Meet

Materials Science 2020 facilitates a unique platform for transforming potential ideas into great business. The meeting creates a global platform aimed to connect global Entrepreneurs, Proposers and the Investors in the field of Materials Science, Biomaterials, Ceramics, Nanotechnology and many more. Its allied fields to develop and facilitate the most optimized and great business for engaging people in to constructive discussions, evaluation and execution of promising business. A platform aimed to connect Entrepreneurs, Proposers and the Investors worldwide. It's meant to form and facilitate the foremost optimized and viable forum for participating individuals in international business discussions, analysis and execution of promising business ideas. An investor could be able to find out the highest potential investment opportunities globally, which provide good return on investment.

For submission of abstract visit: https://materialsscience.heraldmeetings.com/submit-abstract

Comments

Popular posts from this blog

The top ten advances in materials science

1. International technology roadmap for semiconductors 2. Scanning probe microscopes 3. Giant magnetoresistive effect 4. Semiconductor lasers and LEDs 5. National nanotechnology initiative 6. Carbon fiber reinforced plastics 7. Materials for Li ion batteries 8. Carbon nanotubes 9. Soft lithography 10. Metamaterials

Creating a True Materials Revolution

Thomas Edison famously remarked that if he tried 10,000 experiments that failed, he didn't actually consider it a failure, but found 10,000 things that didn't work. That's true, but it's also incredibly tedious, time consuming and expensive. The new methods, however, have the potential to automate those 10,000 failures, which is creating a revolution in materials science. For example, at the  Joint Center for Energy Storage Research (JCESR) , a US government initiative to create the next generation of advanced batteries, the major challenge now is not so much to identify potential battery chemistries, but that the materials to make those chemistries work don't exist yet. Historically, that would have been an insurmountable problem, but not anymore. "Using high performance computing simulations, materials genomes and other techniques that have  been developed over the last decade or so, we can often eliminate as much as 99% of the possibilities