Skip to main content

Creating a True Materials Revolution

Thomas Edison famously remarked that if he tried 10,000 experiments that failed, he didn't actually consider it a failure, but found 10,000 things that didn't work. That's true, but it's also incredibly tedious, time consuming and expensive. The new methods, however, have the potential to automate those 10,000 failures, which is creating a revolution in materials science.
For example, at the Joint Center for Energy Storage Research (JCESR), a US government initiative to create the next generation of advanced batteries, the major challenge now is not so much to identify potential battery chemistries, but that the materials to make those chemistries work don't exist yet. Historically, that would have been an insurmountable problem, but not anymore.


"Using high performance computing simulations, materials genomes and other techniques that have  been developed over the last decade or so, we can often eliminate as much as 99% of the possibilities that won't work," George Crabtree, Director at JCESR told me. "That means we can focus our efforts on the remaining 1% that may have serious potential, and we can advance much farther, much faster for far less money."
The work is also quickly making an impact on industry. Greg Mulholland, President of Citrine Informatics, a firm that applies machine learning to materials development, told me, "We've seen a huge broadening of companies and industries that are contacting us and a new sense of urgency. For companies that historically invested in materials research, they want everything yesterday. For others that haven't, they are racing to get up to speed."
Jim Warren, a Director at the Materials Genome Initiative, thinks that is just the start. "When you can discover new materials for hundreds of thousands or millions dollars rather than tens or hundreds of millions you are going to see a vast expansion of use cases and industries that benefit," he told me.
As we have learned from the digital revolution, any time you get a 10x improvement in efficiency, you end up with a transformative commercial impact. Just about everybody I've talked to working in materials thinks that pace of advancement is easily achievable over the next decade. Welcome to the materials revolution.

Comments

Popular posts from this blog

Metals and Alloys

Metals and alloys are materials that are usually exhausting, malleable, and have smart electrical and thermal conduction. Alloys are created by melting 2 or additional components together, at least one of them a metal. They need properties that improve those of the constituent components, such larger strength or resistance to corrosion Everybody is aware of what metal is; it is found in thousands of things that surround us every day. Once you begin to conserve some of these metal items, however, you discover that the substance is more sophisticated than it looks. Most things we have a tendency to call metals these days are more accurately known as alloys. True metals are pure elements, whereas alloys are blends of two or additional metals that are fusible together. Metals and alloys are straightforward to distinguish from nonmetals because they're usually shinier, heavier, and tougher than most materials and that they are glorious conductors of heat and electricity. Even so, visu...

The Birth of the Materials Project

In 2008,  Kristin Persson's  husband took a job in California, so she left Ceder's group at MIT and joined Lawrence Berkeley National Laboratory (LBL) as a research scientist. Yet, rather than mourn the loss of a key colleague, the team saw the move as an opportunity to shift their work into high gear. "At MIT, we pretty much hacked everything together," Ceder explains. "It all worked, but it was a bit buggy and would have never scaled beyond our small team. At a National Lab, however, they had the resources to build it out properly and create a platform that could really drive things forward." So Persson hit the ground running, got a small grant and stitched together a team to combine the materials work with the high performance supercomputing done at the lab.

Entrepreneurs Investment Meet

Materials Science 2020 facilitates a unique platform for transforming potential ideas into great business. The meeting creates a global platform aimed to connect global Entrepreneurs, Proposers and the Investors in the field of Materials Science, Biomaterials, Ceramics, Nanotechnology and many more. Its allied fields to develop and facilitate the most optimized and great business for engaging people in to constructive discussions, evaluation and execution of promising business. A platform aimed to connect Entrepreneurs , Proposers and the Investors worldwide. It's meant to form and facilitate the foremost optimized and viable forum for participating individuals in international business discussions, analysis and execution of promising business ideas. An investor could be able to find out the highest potential investment opportunities globally, which provide good return on investment. For submission of abstract visit:  https://materialsscience.heraldmeetings.com/submit-abstrac...